

Supplier Quality Reinvented: Managing High-Risk Raw Materials and Global Supply Chain Instability in Cell & Gene Therapy

Prathyusha Guttikonda

Independent Researcher, USA

KEYWORDS:

Cell And Gene Therapy Supply Chain, Viral Vector Manufacturing Capacity, Supplier Qualification Strategies, Risk-Based Quality Management, Dual Sourcing Resilience

Corresponding Author:

Prathyusha Guttikonda

DOI: [10.55677/IJMSPR/2026-3050-I203](https://doi.org/10.55677/IJMSPR/2026-3050-I203)

Published: February 11, 2026

License:

This is an open access article under the CC BY 4.0 license:

<https://creativecommons.org/licenses/by/4.0/>

ABSTRACT

A rapidly increasing demand for cell and gene therapies, despite a stagnant increase in global manufacturing capacity, poses unprecedented challenges to the raw material sourcing and supply chain (RMSS) community. This article discusses the structural weaknesses of the RMSS of cell and gene therapies. These include limited capacity to produce viral vectors and plasmids, geographic concentration of the few specialist suppliers producing those raw materials, and patient-specific production in autologous therapies. Conventional approaches to supplier qualification may be insufficient for these high-risk biological materials, requiring a fundamentally different model for quality assurance. Potential approaches include deep dive technical assessments of prequalified suppliers, dual sourcing, and risk-based tiering of biological materials. Proactive supply chain risk management in clinical development involves the early consideration of the supply chain, planned instead of transactional partnership, geographic technology transfer capabilities, QMSs to manage supplier performance, advanced change control capabilities to account for biological variation, and rapid deviation management to shorten lead times. Regulatory agencies are increasingly requiring proof of supply chain resilience through documented risk management assessments that include justifications for sourcing decisions and contingency plans that are frequently used and exercised. Those organizations that recognize supplier quality management as a planned imperative and invest in dual-sourcing of critical raw materials, strong supply chains, and collaborative relationships with suppliers will deliver transformative therapies. In contrast, those relying on customary supplier practices risk supply failures and limiting patient access to breakthrough therapies.

Cite the Article: Guttikonda, P. (2026). *Supplier Quality Reinvented: Managing High-Risk Raw Materials and Global Supply Chain Instability in Cell & Gene Therapy*. *International Journal of Medical Science and Pharmaceutical Research*, 3(2), 57-62. <https://doi.org/10.55677/IJMSPR/2026-3050-I203>

1. INTRODUCTION: A PERFECT STORM FOR CGT RAW MATERIALS

One of the most interesting developments in modern medicine has been the rapid growth of the cell and gene therapy market. This unprecedented growth has brought to the world's attention vulnerabilities in the infrastructure of global supply chains that have not been seen before. In a thorough market research, the global cell and gene therapy market is expected to grow rapidly owing to an increase in the number of genetic disorders, cancers, and chronic disorders. North America is estimated to dominate the market due to the presence of an advanced healthcare infrastructure and a higher capital investment for R&D activities [1]. This growth is causing an extreme disparity between the demand for therapeutics and the provision of specialized raw materials.

CGT supply chains are much more complex than those for other pharmaceutical products. Indeed, sourcing raw materials for the production of cell therapy and other advanced biomaterials is cited as one of the top challenges facing manufacturers. These biopharmaceutical companies are facing unprecedented challenges in sourcing reliable supplies of viral vectors, plasmid, and growth

factors for their therapies [2]. The manufacturing, quality assurance, and logistics networks needed to produce these materials are specialized. As production is concentrated and limited to specific locations and manufacturers, and the regulatory burden on manufacturers is increased, creating a strong supply chain has become an important part of maintaining product quality and patient access.

The individualized nature of many cell and gene therapies also adds to supply chain complexities: autologous therapies involve manufacturing specifically for the individual patient using their own cells, rather than large batches with inventories like small-molecule and biologic medicines. As drug products depend on supply of raw materials, supply chain disruptions can extend the time required to deliver drugs to patients, thus converting supply chain management from an operational to a patient safety challenge requiring the attention of quality assurance organizations.

2. STRUCTURAL VULNERABILITIES IN CGT SUPPLY CHAINS

The cell and gene therapy supply chain has many structural weaknesses, which are a result of limited capacity, geographic concentration, and the specialized nature of the materials used in the supply chain. Manufacture of the viral vector is a critical bottleneck in the CGT business ecosystem, as the demand for manufacturing capacity is increasing rapidly due to the growing number of gene therapy clinical trials and the need for developing a scalable manufacturing process to support both clinical research and eventual commercial manufacturing [3]. There is a bottleneck in manufacturing capacity for both commercial products and clinical development programs, creating competition between multiple therapeutic candidates for limited production capacity.

The global supply of the raw materials is limited due to the technical difficulty of producing them and the related high capital investments necessary for the infrastructure. For instance, the manufacturing of viral vectors requires specialized equipment, biosafety containment, and highly qualified personnel. Research into the manufacture of cell and gene vectors has shown that in order to show product quality and safety, the manufacturing facility must comply with Good Manufacturing Practice (GMP) standards and have well-defined quality control systems, manufacturing procedures, and product quality release specifications [4]. These factors create large barriers to rapidly ramping up capacity, with site development, permitting, and commissioning requiring several years to complete.

Geographic concentration is a vulnerability associated with utilizing manufacturing capability in certain geographic locations. Supplier qualification strategies may reveal that many critical raw materials are concentrated in only a few suppliers and geographic regions. This could create systemic risks such as natural disasters, geopolitics, or regulation, for multiple supply chains at once [5]. Because so much of the production is centralized, if there is a shutdown at an individual manufacturing site or a regional disaster, several manufacturing sites, multiple programs, and patient populations may be affected. In addition, materials cannot be taken for a patient from a different batch because of the personalized nature of these therapies. Thus, each disruption is potentially treatment-limiting.

Cryogenic storage and transportation, as well as monitoring temperatures and expedited transport to minimize the duration of time spent outside cold-chain environments, add complexity to the supply chain for manufacturing CGT materials. These considerations give rise to supply chains with highly specialized cold-chain processes to ensure the integrity and efficacy of temperature-sensitive materials when considering cell and gene therapy supply chains and production. Thus, high-stakes logistics for these drugs include validated packaging, backup supply chains, and continuous monitoring of products throughout distribution [6]. Any disruptions can result in waste and delays and may impact the timeliness and reliability of commercial supply and clinical progress. These interrelated vulnerabilities highlight the limitations of the customary pharmaceutical supply chain model for meeting the highly specialized requirements of cell and gene therapy manufacturing.

Table 1: Structural Vulnerabilities in CGT Supply Chains [3, 4]

Vulnerability Category	Key Challenges	Impact on Manufacturing	Mitigation Requirements
Limited Manufacturing Capacity	Constrained viral vector and plasmid production facilities requiring specialized biosafety containment and trained personnel	Competition for manufacturing slots among clinical and commercial programs	Multi-year facility development with substantial capital investments
Geographic Concentration	Critical suppliers are concentrated in limited regions, creating systemic exposure to regional disruptions	Single facility closures cascade through multiple therapeutic programs	Geographic diversification and domestic sourcing alternatives
Personalized Therapy Complexity	Patient-specific materials with no inventory buffers and compressed timelines	Any delay jeopardizes the entire treatment for individual patients	Sophisticated logistics coordination and meticulous handling protocols
Cold-Chain Requirements	Temperature-sensitive materials requiring cryogenic storage and validated transportation	Material integrity compromised by temperature excursions	Real-time monitoring systems and backup contingency procedures

3. REIMAGINING SUPPLIER QUALIFICATION FOR HIGH-RISK MATERIALS

Conventional supplier qualification models and the associated quality standards that have been used in the manufacture of small molecule and biologic drugs cannot be directly transferred to the much more complex raw materials used in the manufacture of cell and gene therapies. Wide-ranging regulatory guidance is available on raw material control and supplier qualification. The FDA guidance for Chemistry, Manufacturing and Control (CMC) information in a human gene therapy IND application says that sponsors should provide information on all raw materials and reagents used in manufacturing, including their suppliers and quality standards, and any planned testing of the ingredients or materials to be sure that they are satisfactory for their intended use, and do not compromise the safety or effectiveness of the final product [7].

Detailed technical assessments of high-risk materials should include considerations of supplier capability with respect to product quality and reliability of supply. With regard to viral vectors, plasmids, and some critical biological materials, quality organizations should assess the robustness of the manufacturing platform, including the extent of process characterization, the ability to scale from clinical to commercial scale, and the demonstration of production consistency. Suppliers should be required to perform in-house analytical methods for identity, purity, potency, and adventitious agent tests. The use of third-party testing laboratories can add time and reduce control. Supplier qualification should also cover the resilience of the supplier's supply chain. Materials used in manufacturing raw materials can represent a bottleneck and need to be visible multiple tiers deep in the supply chain [8].

Chain-of-identity and chain-of-custody controls are a vital aspect of supplier qualification, and they are even more relevant when patient-specific therapies are involved. Each transfer of material, the temperature of storage at each step, and the manner of handling are documented, linked back to the manufacturing batches, and ultimately to the patients. Additional challenges for compliance include advanced quality systems that include electronic batch records, automated confirmation of traceability and reconciliation, and cold-chain logistics capabilities. The latter is required because many CGT products must be stored and transported cryogenically in validated containers and with real time temperature monitoring, and procedures must be in place to document that any out-of-specification temperature excursions have been handled appropriately. The clinical supply chain literature on cell and gene therapy focuses on the scenario-based logistics planning needed to ensure resilient supply chains that avoid degradation of materials and delays in treatment, including alternate routes for shipping and alternate storage facilities [6].

Risk-based acceptance criteria and material tiering allow the quality functions to allocate their resources in accordance with risk. Viral vectors, plasmids, and starting materials derived from the donor are Tier 1 critical materials that receive the most wide-ranging oversight, including technical review, frequent on-site audits, increased lot-by-lot testing, and an escalation pathway to follow up if quality is put at risk. Cytokines, growth factors, and cell culture media have meaningful impacts on the safety and efficacy of the product and are difficult to detect and eliminate once incorporated. These Tier 2 materials are qualified as standard suppliers. Periodic re-evaluation takes place based on trend data and risk-based sampling approaches. Ancillary reagents and consumables are Tier 3 materials with reduced scrutiny-level requirements, more vendor-certification based acceptance, and less emphasis on testing in order to conserve available quality resources for higher risk materials where oversight provides the highest risk reduction.

Table 2: Reimagining Supplier Qualification for High-Risk Materials [5, 6]

Assessment Dimension	Traditional Approach	CGT-Specific Requirements	Quality Impact
Technical Assessment	Certificate of analysis review and basic facility audit	Deep-dive evaluation of manufacturing platforms, scalability potential, and process characterization	Ensures supplier capability to maintain quality through clinical-to-commercial scale transition
Testing Capabilities	Acceptance of third-party laboratory results	In-house comprehensive analytical methods for identity, purity, potency, and adventitious agents	Reduces dependency and accelerates lot release timelines
Material Tiering	Uniform supplier oversight across all materials	Risk-based classification with Tier 1 critical materials receiving intensive scrutiny	Optimizes quality resource allocation matching oversight to risk exposure
Chain-of-Custody	Basic traceability documentation	Electronic batch records with automated tracking linking materials to specific patients	Ensures accountability throughout personalized therapy manufacturing

4. PROACTIVE SUPPLY CHAIN RISK MANAGEMENT STRATEGIES

All of the considerations discussed above suggest that proactive supply chain risk management should be considered at the earliest stages of therapeutic development, ideally during preclinical or early clinical development, rather than at later development or pre-commercialization stages. Studies of the quality attributes of cell-based medicinal products have highlighted the need to develop a manufacturing process and plan the supply chain in parallel with product development, and to identify and proactively address risks

such as potential bottlenecks at the earliest possible point in time [4]. Early supply chain planning makes it possible to accurately forecast raw material needs for clinical and commercial supply, identify capacity bottlenecks via demand modeling, and purchase long-lead materials by committing to or holding capacity with key suppliers. Companies that engage in early supply chain planning have a higher likelihood of meeting key dates for on-time program advancement and commercial launch. These companies can avoid the compressed timelines and associated higher cost often intrinsic in reactionary supply chain planning.

The change from the short-term supplier relationship to planned material partnerships, based on a mutuality of interest and risk-sharing, is a new model for leading CGT manufacturers. The limited number of qualified suppliers for specialized materials gives the supplier an effective playing field advantage, which will help reduce supply risk and control costs. Planned partners, such as dual sourcing, may lower the risk of supply disruption without creating so much complexity that they are no longer helpful, again if structured correctly [5]. Joint planning of capacity through regular business reviews, where forthcoming demand can be discussed, gives suppliers the confidence to invest in capacity. Joint risk assessments and workshops allow both parties to identify risks arising from raw materials, facility dependence, national changes to regulation and geopolitical positioning and prepare plans to reduce risks that neither party can control alone.

Co-development of analytical methods and release strategies is a further aspect of calculated supplier collaboration to improve supply chain performance without affecting product quality. Planned collaboration with suppliers may lie in areas such as analytical methods, product knowledge-based specifications, and risk-based release strategies and can lead to important reductions in cycle time from manufacturing to release of product onto the marketplace. Transparent agreements on intended use, critical quality attributes (CQAs), and acceptable ranges of variation allow suppliers to make trade-offs between their process improvements and meeting customer CQAs without compromising their quality or regulatory compliance. The flexibility of planned sourcing, such as assessing domestic manufacturing and technology transfer, can help reduce many of the concerns affecting global supply chains in recent years related to geopolitical conflict and trade restrictions [6]. These companies, with their well-developed technology transfer and comparability frameworks and demonstrated technology transfer and strategy capabilities, can therefore adapt quickly to changing geopolitical circumstances and rising supply risks.

The capabilities of technology transfer may also determine which supply chain strategies are implemented (for example, dual sourcing or geographical diversification). Successful technology transfers are likely to take place within complex biological supply chains. These may require detailed transfer protocols, process characterization, analytical comparability frameworks for relevant critical quality attributes, and validation plans according to regulatory guidance for comparability assessments. Being a multi-disciplinary activity handled by Subject Matter Experts in process development, analytical scientists, quality assurance and regulatory affairs, successful technology transfer should ensure that product quality attributes and regulatory aspects are maintained and compliant through the transfer. Organizations with a dedicated technology transfer capability enjoy higher first pass success rates, shorter technology transfer timelines, and higher confidence in taking steps towards supply chain diversification to achieve resilience from single-source and site concentration risks.

Table 3: Proactive Supply Chain Risk Management Strategies [7, 8]

Strategy Component	Implementation Approach	Timeline Considerations	Expected Outcomes
Early Supply Chain Integration	Parallel development of manufacturing processes and supply planning during clinical phases	Commence during preclinical and Phase I development	Higher on-time program advancement and commercial launch readiness
Strategic Partnerships	Transition from transactional purchasing to collaborative relationships with joint planning	Establish through regular business reviews and shared risk assessments	Enhanced supply reliability and coordinated capacity expansion
Dual Sourcing Implementation	Qualification of second sources for critical materials with comparability protocols	Requires substantial time for validation studies and regulatory submissions	Mitigation of single-source dependency risks and supply disruption impacts
Technology Transfer Maturity	Robust transfer protocols with comprehensive comparability frameworks	Multi-phase process requiring cross-functional expertise	Enables geographic diversification and domestic sourcing alternatives

5. REGULATORY CONSIDERATIONS AND QUALITY SYSTEM EVOLUTION

As regulations governing the manufacture of cell and gene therapies mature, the quality systems and supplier quality approaches adopted must evolve from the customary pharmaceutical quality system. The FDA guidance for chemistry, manufacturing and control (CMC) for gene therapy products, for example, outlines an expectation that the manufacturer collect information on all raw materials used in manufacturing processes, the sources of raw materials, their specifications, and the tests that will be performed to ensure the suitability of the raw materials for their intended use, and to ensure that they do not adversely affect safety and

effectiveness [7]. Knowledge of material attributes, potential contaminants, and associated controls is expected throughout the product lifecycle from the clinical study phase to commercial manufacture. Supply chain risk management strategies are becoming common expectations from regulatory authorities and can be demonstrated in risk assessments, dual sourcing options (with appropriate justification for single sourcing), and thorough plans for reducing supply disruptions.

Strong advanced supplier performance management programs with well-built leading and lagging indicators must be integral to a quality management system (QMS). Leading indicators, such as on-time delivery trending, capacity utilization and audit finding closure rates, provide early warning and performance feedback to help organizations improve and prevent quality problems before they occur. Lagging indicators include lot rejection rates, deviations rates, certificate of analysis accuracy, and may also indicate a trend or a need for supplier remediation or supplier requalification. Increasing attention is given to trending supplier quality metrics through statistical process control approaches to detect signals of a future issue before it manifests as a quality event in the field or a supply disruption [9]. These monitoring systems should also specify when the supplier should be put on notice for excessive late deliveries, failing to meet product quality specifications, and a decline in quality metrics.

Because natural variability and changes in suppliers, sites, and/or processes may affect one or more quality attributes of the material, comparability protocols should be used to show whether or not such changes have an impact on the suitability of the material and/or the quality or safety of the resulting product. These strategies will generally use different levels of comparability standards depending on the nature of the change and the criticality of the product, from acceptance criteria based on clinically relevant specifications and commercially-derived quality ranges to statistical assessment of equivalence. Regulatory expectations are that scientific rationale and assessment of risk are used to determine comparability, and that analytical comparability assessment focuses on those attributes most likely to be affected by the change and most relevant to product safety and efficacy [7].

Deviations management systems for CGT supply chains must be able to efficiently assess the impact of the deviation and support a disposition decision. In manufacturing campaigns that may last weeks, there may be limited opportunity to conduct a detailed investigation before the necessity to make disposition decisions, unlike customary pharmaceutical manufacturing with potentially multimonth inventory buffers. Regulatory guidance for cell-based therapies includes, for example, recommending that deviation management systems should include pre-defined decision trees for common deviations, cross-functional rapid response teams that can convene within hours rather than days, clear acceptance criteria so that decisions can be made in a timely manner based on scientific rationale and risk assessment, and a detailed rationale for any disposition decision. Deviation management systems are subject to inspection and product review. Best practices around supplier management, change control, and deviation management can help to support the needs of a cell and gene therapy manufacturing quality system in an ever-changing regulatory environment.

Table 4: Regulatory Considerations and Quality System Evolution [9, 10]

Quality System Element	Regulatory Expectation	Implementation Requirements	Compliance Benefits
Supplier Performance Monitoring	Demonstrated proactive oversight with systematic trending	Leading and lagging indicators with statistical process control methods	Early identification of concerning patterns before quality events
Change Processes Control	Science-based comparability assessments for material changes	Tiered testing approaches are proportional to change significance and material criticality	Risk-appropriate evaluation ensuring continued product suitability
Deviation Management	Rapid impact assessment within compressed manufacturing timelines	Pre-established decision trees and cross-functional rapid response teams	Timely disposition decisions minimize manufacturing hold times
Supply Chain Documentation	Comprehensive risk assessments and contingency planning	Multi-tier visibility, including supplier sub-tier dependencies	Regulatory confidence in supply chain resilience and product continuity

6. CONCLUSION

The cell and gene therapy industry has emerged as a disruptive force in the pharmaceutical landscape, simultaneously exposing existing systemic flaws in the global supply chain infrastructure that are responsible for delaying therapy development and patient access. Increases in patient population, research insights, and approval rates have outpaced the supply of key components that enable such specialized therapies, including viral vectors, plasmids, and donor-derived materials. Supply chain resiliency has changed from an operational problem with long lead times and high capital burden to a core element of product quality and commercial success. Global manufacturing capacity limitations and multi-year time scales to build facilities, geographic concentration of suppliers creating systemic regional supply chain risk, and long-term geopolitical disruption of trade patterns and material availability have reinforced the need to rethink supplier qualification models developed for customary pharmaceutical commodities for large,

complex biological intermediates and final products that drive cell and gene therapy manufacturing. Quality assurance models need to additionally consider and evaluate manufacturability, testing infrastructure, chain of custody, and cold chain sustainability. Dual sourcing, even with the associated important validation and comparability requirements, is an important risk mitigation measure to be considered in settings with a limited supply of qualified suppliers and with increasing disruption risks due to the single sourcing of API. Tiered risk models to allow for increased scrutiny of complex or high-risk materials like viral vectors and plasmids, while reducing scrutiny on more standard reagents, allow for more efficient use of resources. Anticipatory supply chain risk management can include early integration with clinical development for more accurate material forecasting and potentially emerging bottlenecks, networked suppliers for joint capacity and risk assessments, technology transfer capabilities for geographical diversification in sourcing to reduce regional shortages, and supplier oversight through quality management systems (QMS) with predictive leading and retrospective lagging indicators. Change control and comparability protocols based on scientific principles can be used to assess material comparability, while rapid deviation management can allow for timely decisions without sacrificing the short turnaround of manufacturing operations required for personalized therapies. Currently, regulators require evidence of supply chain resilience with documented risk assessment using QRM approaches, a sourcing policy that is justifiable, including justifying single source materials, and a planning approach for business continuity if a supply chain is disrupted (including alternative suppliers or modalities). Quality by design in supplier quality management with demonstrated direct impact on patient access, regulatory approval, and commercial success will succeed in yielding resilient, quality supply chains through investment, collaboration, and early development planning. Customary compliance-based risk approaches with cost minimization in a short term perspective will risk catastrophic failure, delay, or deny patient access to breakthrough medicines in serious diseases where alternatives are limited.

REFERENCES

1. Umesh Yadav, "Cell and Gene Therapy Market Size, Growth Trends and Forecast to 2025-2033," DataM Intelligence, 2025. Available: <https://www.datamintelligence.com/research-report/cell-and-gene-therapy-market>
2. Raj Joshi, "Supply chain sourcing and sustainability strategies for cell therapy and advanced biomaterial products," Cell and Gene Therapy Insights, 2024. Available: https://www.researchgate.net/publication/398748195_Supply_chain_sourcing_and_sustainability_strategies_for_cell_the_therapy_and_advanced_biomaterial_products
3. Fact.MR, "Viral Vector Production (Research-use) Market," 2025. Available: <https://www.factmr.com/report/viral-vector-production-research-use-market>
4. Demissie Alemayehu et al., "A data-driven approach to quality risk management," Perspect Clin Res., 2013. Available: <https://pmc.ncbi.nlm.nih.gov/articles/PMC3835966/>
5. Pharma Source Global, "Strategic Dual Sourcing: Risk Mitigation Without Complexity," Available: <https://pharmasource.global/content/expert-insight/strategic-dual-sourcing-risk-mitigation-without-complexity/>
6. Clinical Research News, "Practical Considerations for Managing Cell and Gene Therapy Supply Chains," 2023. Available: <https://www.clinicalresearchnewsonline.com/news/2024/01/05/practical-considerations-for-managing-cell-and-gene-therapy-supply-chains>
7. U.S. Food and Drug Administration, "Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs)," 2020. Available: <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/chemistry-manufacturing-and-control-cmc-information-human-gene-therapy-investigational-new-drug>
8. National Center for Biotechnology Information, "Building Resilience into the Nation's Medical Product Supply Chains," Hardcopy Version at National Academies Press. Available: <https://www.ncbi.nlm.nih.gov/books/NBK583751/>
9. Patrick Killela et al., National Center for Biotechnology Information, "Mitigation of supply chain challenges in cell therapy manufacturing: perspectives from the cord blood alliance," Stem Cells Transl Med., 2024. Available: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11386209/>
10. Junnan Shi et al., "The clinical quality management system of advanced therapy medicinal products in the hospital setting: A scoping review," Molecular Therapy Methods & Clinical Development, 2025. Available: <https://www.sciencedirect.com/science/article/pii/S2329050125000804>